[chưa dịch]
A simple extraction procedure using water is recommended for measuring the pH of non-aqueous solutions containing waterimmiscible solvents. Water is added and mixed thoroughly with the sample. After reaching equilibrium, the solvent phase is separated and the pH of the water phase is then measured.
Liquids can serve as solvents to dissolve solutes (i.e., solid, liquid or gaseous) to form solutions. The most common solvent is water. Solvents other than water are called nonaqueous solvents. Some examples of nonaqueous solvents are hexane, alcohol, oil, etc. These are often mixed with water or some other non-aqueous solvents to form mixed solvents appropriate for certain applications in chemical research or industrial processes. Non-aqueous solvents that tend to mix with water to form homogeneous mixture are called water-miscible (e.g., methanol, acetone) while those which separate or form a layer when mixed with water are waterimmiscible (e.g., oil, hexane, toluene).
pH measurement in non-aqueous and mixed solutions poses a number of issues such as dissociation of the solvent, different pH scale, and liquid junction potential to name a few. The typical problems encountered during measurement with pH electrodes are slow response time, unstable readings, and erroneous results. According to Frant2 , the electrode should have an adequate outward flow from the junction and the junction design should permit easy cleaning for optimum performance. These two key features prevent memory effects at the junction and minimize liquid junction potential
The Sleeve ToupH 9481-10C electrode(PN 3200611631) is our recommended product for pH measurement in nonaqueous and mixed solutions. It is a refillable, double-junction, glass-body, combination pH electrode. The cable length is 1m and the connector is BNC, compatible with any pH meter that has BNC input. The movable glass sleeve allows easy cleaning of the liquid junction and prevents clogging.
The applications include testing of non-aqueous solvents, viscous solutions, and samples containing non-aqueous solvent (e.g., cosmetics, paints, etc). If a combination pH electrode with built-in temperature sensor is desired, the Sleeve ToupH 9681S-10D electrode (PN 3200585463) meets this requirement. This electrode is compatible with HORIBA pH meters only.
Figure 1: Solvent Miscibility and Solubility (Source: Restek http://www.restek.com/techtips/Solvent-Miscibility-and-Solubility )
Calibrate the meter and electrode system according to manufacturer’s instructions with at least two pH buffers that bracket the expected sample pH.
To obtain accurate results, standard buffer solutions and samples should be measured at the same temperature. If the electrode is coated with oily material from a sample, clean it with detergent and warm water.
As non-aqueous solvents have very low conductivity and can dehydrate the glass membrane, it is difficult to use glass electrodes in measuring pH directly. There must be some electrical conductivity through the solution and glass membrane must be hydrated to function well..
For water-immiscible non-aqueous solvents and non-aqueous solutions with water-immiscible solvents, this measurement can be accomplished by adding water as described in the method above. Pure water with very low buffering capacity and no dissolved salts should be mixed thoroughly with the solvent. Once the two phases are in equilibrium with each other, the activity of any dissolved species should be the same in both phases. After separating the solvent phase, the pH of water phase is then measured.
For water-miscible non-aqueous solvents and mixed aqueous/water-miscible non-aqueous solutions (e.g., water
and methanol), a reproducible measurement process can be achieved if the solvent background is known and constant. To do this, it is important to describe the choice of pH electrode, calibration standards, sample preparation, and electrode conditioning.