

Award Winning Excimer Laser Technology

Innovation at Work

DEUTSCHER ZUKUNFTSPREIS

Preis des Bundespräsidenten für Technik und Innovation

Nominee 2013

3

Excimer Lasers and UV Optical Systems

Table of Contents Laser Selection Guide 4-5 **Applications Matrix** 6-10 **Applications Labs Worldwide** 11 **Excimer Lasers** ExciStar XS 12-13 IndyStar 14-15 COMPexPro 16-17 BraggStar M 18-19 LPXpro 20-21 LEAP 22-23 LAMBDA SX 24-27 VYPER 28-29 On-Site Requirements 30-31 **UV Optical Systems and Components** 32-33 **UV**blade 34-35 LineBeam 36-37 VarioLas Family 38-39 GeoLasHD 40-41 Components 42-44 Service 45-46 **Laser Measurement and Control Accessories** 47-49 **How to Contact Us** 50 Visit the Coherent Website 51

Laser Selection Guide

Excimer Lasers

xciStar XS	Wavelength (nm)	Max. Energy (mJ)	Max. Repetition Rate (Hz)
	157	2	500
	193	10	500
	248	12	500
	351	5	500
ndyStar¹			
	193	8	1000
	193	4	2000
	248	12	1000
		6	2000
	248	0	2000
OMPexPro COMPexPro 50	193	100	50
COMPexPro 50	193 248	100 150	50 50
	193 248 193	100 150 200	50 50 100
COMPexPro 50	193 248 193 248	100 150 200 400	50 50 100 100
COMPexPro 50	193 248 193 248 308	100 150 200 400 250	50 50 100
COMPexPro 50	193 248 193 248 308 351	100 150 200 400 250 150	50 50 100 100 100
COMPexPro 50 COMPexPro 100	193 248 193 248 308 351	100 150 200 400 250	50 50 100 100 100 100
COMPexPro 50 COMPexPro 100	193 248 193 248 308 351	100 150 200 400 250 150	50 50 100 100 100

¹ Max. energy (mJ) is stabilized energy.

248

140

100

Laser Selection Guide

Excimer Lasers

(pro Series	Wavelength (nm)	Max. Energy (mJ)	Max. Repetition Rate (Hz)
LPFpro 205	157	50	50
LPFpro 220	157	40	200
LPXpro 210	193	300	100
	248	700	100
	308	450	100
	351	200	100
LPXpro 220	193	250	200
	248	400	200
	308	275	200
LPXpro 240	193	80	300
	248	160	400
LPXpro 305	193	400	50
	248	800	50
	308	600	50
	351	300	50

LEAP

LEAP 130K	248	650	200
LEAP 130C	308	650	200

LAMBDA SX

LAMBDA SX C-Series	308	1000	600
LAMBDA SX K-Series	248	1000	300
LAMBDA SX E-Series	308	1000	500

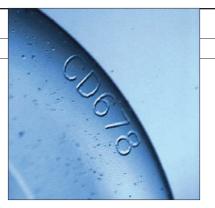
VYPER

VYPER	308	2000	600
TwinVYPER	308	4000	600

Applications Matrix

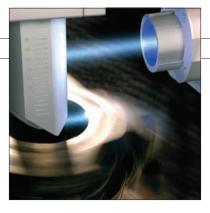
	ExciStar XS	BraggStar M	IndyStar	COMPexPro	LPX pro Series	LEAP	LAMBDA SX	VYPER
Marking								
Polymer, Teflon Marking	•		•	•	•			
Visible and Invisible Marking (Eyeglass Marking, etc.)	•		•	•	•			
Diamond and Jewel Marking	•							
Material Processing								
Polymer Drilling (Inkjet Nozzle, Filter)			•		•	•	•	
Hard and Brittle Drilling			•	•	•	•	•	
FBG Writing	•	•			•			
Thin Film Structuring (TCO, ITO, ZnO, FiNx, etc.)				•	•	•		
Laser Lift-Off (LLO)				•	•	•	•	•
Surface Treatment								
Excimer Laser Annealing (ELA/SLS)							•	•
Cylinder Honing							•	•
Pulsed Laser Deposition (PLD)				•	•	•	•	•
Laser Direct Synthesis (LDS)				•	•	•		
Laser Direct Patterning (LDP)					•	•	•	•
Laser-Induced Forward Transfer (LIFT)				•	•	•	•	•
Ion Implantation/Doping/Implant Activation				•	•	•	•	•
Surface Cleaning	•		•	•	•	•	•	•
Measurement								
Combustion Analysis	•			•				
Optics/Coating Testing	•		•		•			
Mask Inspection	•		•					
Spectroscopy, LIDAR	•			•	•	•		
Laser-Induced Fluorescence (LIF)	•			•	•	•		
Medical Procedures								
Psoriasis/Vitiligo Treatment	•			•				
Refractive Eye Surgery (Lasik*)	•			•				
1 This will be seen to be a first for a seed to be a first for a f			P P					

¹ This matrix shows only a sampling of many possible applications for our lasers. Please contact us regarding your specific application.

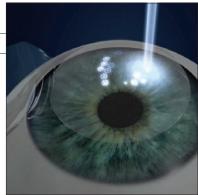

COHE

Examples

Applications


Glass Marking
Laser Model

ExciStar XS


Cylinder Honing

Laser Model LAMBDA SX

LASIK Vision Correction

Laser Model ExciStar OEM

Laser Lift-Off processing of wafers and panels

Laser Model LEAP, LAMBDA SX, UV*blade*

Laser Selection Guide

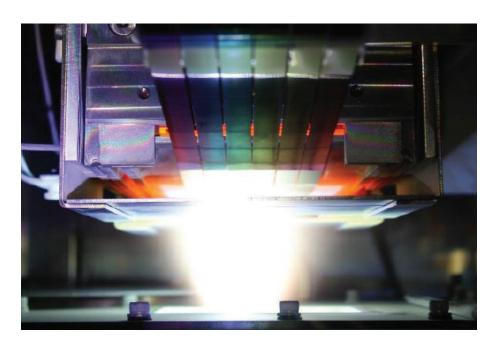
Application

Excimer Laser:

UV Optical Syste

Customer Suppor

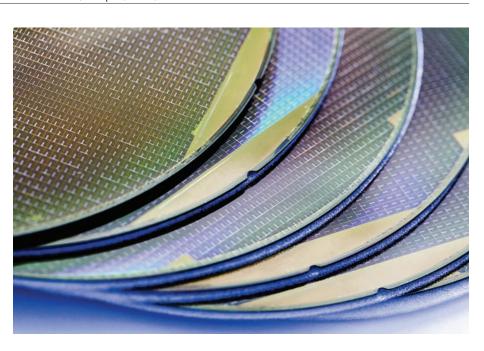
LMC Accessorie


Applications

Examples

Laser CVD and PLD generated thin films (courtesy of SuperOx Japan LLC)

Laser Model

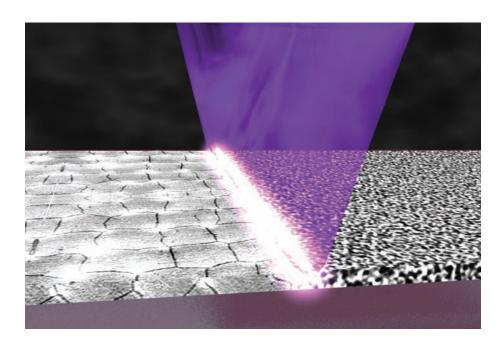

COMPexPro, LPXpro, LEAP, LAMBDA SX

Excimer laser debonding of thinned wafers for advanced packaging

Laser Model

COMPexPro, LPXpro, LEAP, LAMBDA SX

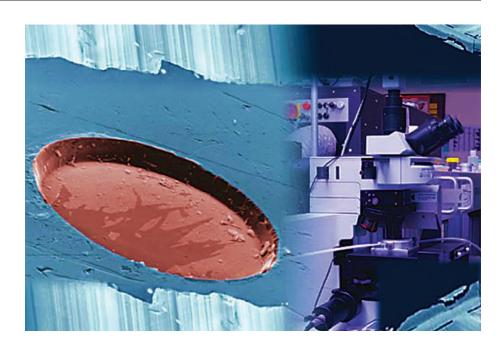
9


Applications

Examples

Laser Annealing of Low Temperature Polysilicon

Laser Model


LAMBDA SX, VYPER, LineBeam

Laser ablation-ICP-MS analysis of trace elements in earth sciences and process control

Laser Model

GeoLasHD, ExciStar XS, COMPexPro

Excimer Laser Applications

Laser Direct Patterning

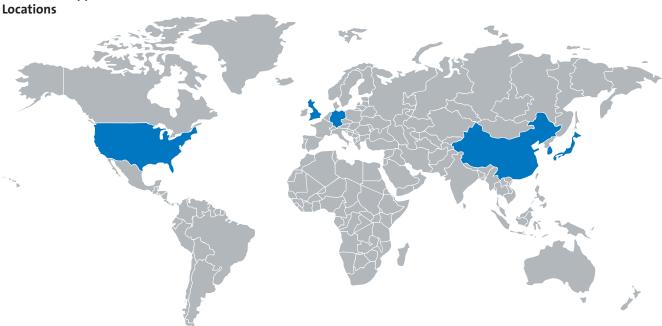
Bragg Grating Writing

TO Film Structuring

SIWafer Dopant Activation

Thin Glass Via Drilling

CERP Fie-Treatment.


Excimer Lasers: Masters of Microprocessing

Applications Labs Worldwide

Our laser applications labs provide state-of-the-art feasibility testing of material processing methods. Please contact your Coherent representative or Coherent sales office for more information. For contact information, please go to page 50.

aser Selection Guide

Application

Excimer Lasers

UV Optical Syster

Customer Suppor

LMC Accessorie

COHERENT.

ExciStar XS

Excimer Lasers

ExciStar XS excimer lasers are tabletop systems with an ultra-compact design for easy installation and operation. Due to the integration of the Almeta XS tube design, they deliver excellent results in low pulse energy applications.

Featuring soft corona preionization, the ExciStar XS provides a homogeneous energy distribution and high pulse-to-pulse stability. Solid-state switching provides immediate and maintenance-free operation, and units are available with maximum repetition rates of 200 Hz and 500 Hz.

ExciStar XS

Excimer Lasers

Key Features	Customer Benefits
Ultra-Compact	Low investment costs
Lightweight Design	Flexible integration
Almeta XS Tube Design	Extended tube lifetime
	High pulse-to-pulse stability
	Available at 157 nm, 193 nm, 248 nm and 351 nm wavelengths
Corona Preionization	Homogeneous beam profile
Solid-State Switch	Immediate operation
	Maintenance-free operation
Energy Monitor	Preset stabilized energy operation

Specifications	V	Vavelength (nm)	ExciStar XS 200/ ExciStar XS 200 emon	ExciStar XS 500/ ExciStar XS 500 emon		
	Max. Pulse Energy (mJ)	157	2	2		
		193	10	10		
		248	12	12		
		351	5	5		
	Stabilized Pulse Energy (W)	157	1	1		
		193	5	5		
		248	8	8		
		351	4	4		
	Average Pulse Power (W) (1)	157	0.2	0.5		
		193	1	2.5		
		248	1.6	4		
	Energy Stability (sigma, %)	351	0.8	2		
		All	<2	<3		
	Maximum Repetition Rate (Hz)	All	200	500		
	Pulse Duration (typ., ns)	All	5	5		
	Beam Dimension (FWHM, VxH, mm	n²) All	6 x 3	6 x 3		
	Beam Divergence (FWHM, VxH, mra	ad²) All	<3 X 1.5	<3 X 1.5		
	Part-No. (for all wavelengths)	All	1171094 (without e-mon) 1171096 (including e-mon)	1171095 (without e-mon) 1171097 (including e-mon)		
Weight/Utilities/	Weight		58 kg / 128 lbs.			
Dimensions	Cooling		Air-cooled			
	Electrical		230 V, 50 or 60Hz, 2000VAC, 16A (recommended external fuse), single phase			
	Dimensions (L x W x H)		649 x 300 x 400 mm (25.6 x 11	.8 x 15.7 in.)		

¹ Measured at stabilized energy and maximum repetition rate.

Laser Selection Guide

COHERENT.

IndyStar

Excimer Lasers

The IndyStar Series represents a compact laser series for applications needing high repetition rates up to 2000 Hz and low pulse energy. Available for 193 nm and 248 nm, it combines the demanding requirements of a semi-S2-certification with an extended components lifetime.

The IndyStar from Coherent is setting new standards for components lifetime in industrial applications. Based on the Almeta-tube-technology, the IndyStar achieves lifetimes of many billion pulses, resulting in a reduction of the overall costs of operation.

The success of a UV-laser application depends on high performance, reliability, easy process integration, safety and fast-response support from your laser supplier. Coherent knows that at the core of your business is your process device and its heart is the laser. The Indy-Star series is engineered to meet the demands in every aspect of an industrial laser.

Accessories	Part No.	Product Description
	1285557	External Heat Exchanger KB200VE Pro – 19"; cooling capacity 2 kW; water-to-air

IndyStar

Excimer Lasers

Key Features	Customer Benefits
• Industrial Design with Semi-S2-certificate	High uptime
	Low maintenance
Corona Preionization	Homogeneous beam profile
Solid-State Pulser	 "Soft" discharge for better pointing and energy stability
	No warm-up time, maintenance-free
AlmetaTube Technology	All metal sealed tube design
	Extended lifetimes for many billion pulses
Modified Electronic Concept	Proven design
	"POWERLOK" function integrated
	 Lowest jitter by "TIMELOK" function
Integrated Energy Monitor	Laser operation at preset stabilized energy
Compact Design, Single Phase, Advanced Service Concept	Quick and easy integration

Specifications	Parameter	ArF	ArF	KrF	KrF	
	Wavelength (nm)	193	193	248	248	
	Max. Repetition Rate (Hz)	1000	2000	1000	2000	
	Stabilized Pulse Energy (mJ)	8	4	12	6	
	Stabilized Pulse Power (W)	8	8	12	12	
	Energy Stability (sigma, %)	<2	<2	<2	<2	
	Beam Dimensions (FWHM, V x H, mm ²)	6 x 2.7	5.7 X 2.3	5.8 x 2.8	5.8 x 2.7	
	Beam Divergence (FWHM, V x H, mrad²)	<3.5 X 1.5	<3.5 x 1.5	<3.0 X 2.3	<3.5 X 1.5	
	Pulse Duration (FWHM)(ns)	5 ±2	4 ±1	6 ±2	4 ±1	
	Part No.	IndyStar 193 1 kHz	IndyStar 193 2 kHz	IndyStar 248 1 kHz	IndyStar 248 2 kHz	
		1166017	1162918	1166018	1166016	
Weight/Utilities/	Weight	135 kg/298 lbs.				
Dimensions	Cooling					
	1 kHz-version	Air-cooled; water-cooling optionally				
	2 kHz-version	Water-cooled				
	Electrical	230V, 50/60 Hz, 2 single or two ph		nmended external fus	se),	
	Dimensions (L x W x H)	974 x 381 x 838 m	nm (38.35 x 14.96 x 32	2.95 in.)		

Laser Selection Guide

COMPexPro

Excimer Lasers

COMPexPro lasers are highly effective light sources, featuring a compact design and easy installation and operation. They deliver superior results in demanding applications, such as solid sampling systems (LA-ICP-MS), material research (PLD) and precise material processing.

Featuring new ceramic preionization, the COMPexPro provides multi-hundred millijoules output, plus unmatched pulse-to-pulse stability. The COMPexPro also comes with an improved gas processor that extends both gas and optics lifetimes.

Accessories

Part No.	Product Description
26082610	Unstable Resonator Optics 193 nm (COMPexPro 50)
1280255	Unstable Resonator Optics 193 nm (COMPexPro 100)
26082710	Unstable Resonator Optics 248 nm (COMPexPro 50 and 100)
26082810	Unstable Resonator Optics 308 nm (COMPexPro 100)
26083010	Unstable Resonator Optics 193 nm (COMPexPro 200)
26083110	Unstable Resonator Optics 248 nm (COMPexPro 200)
26083210	Unstable Resonator Optics 308 nm (COMPexPro 200)
262456	Unstable Resonator Adapter (COMPexPro 50, 100 and 200)
1149339	Beam Aligner
1132990	Temperature Stabilization Module

COMPexPro

Excimer Lasers

Key Features	Customer Benefits
Ceramic Preionization	 Unmatched pulse-to-pulse stability
	Increased pulse energy
	Increased static gas lifetime
Integrated Vacuum Pump and Halogen Filter	Compact standalone design
Integrated, Purgable Energy Monitor	Preset stabilized energy operation
Air-Cooled (up to 20 Hz), Single-Phase	Quick and easy integration

Specifications	Wave	elength¹ (nm)	COMPexPro 50	COMPexPro 102	COMPexPro 110	COMPexPro 201	COMPexPro 205	
	Maximum Pulse Energy¹ (mJ)	193	100	200	200	400	400	
		248	150	400	400	700	700	
		308	-	250	250	500	500	
		351	-	150	150	300	300	
	Maximum Average Power ² (W)	193	4	4	12	4	15	
		248	7	7	30	7	30	
		308	-	5	16	4	20	
		351	-	3	12	3	15	
	Maximum Repetition Rate (Hz)	All	50	20	100	10	50	
	Pulse Duration (FWHM, ns, typ.)	All	20	20	20	25	25	
	Energy Stability (sigma, %)	All	1	1	1	1	1	
	Beam Dimensions (FWHM, V x H, mm², typ.)	All	14 X 5	24 X 10	24 X 10	24 X 10	24 X 10	
	Beam Divergence (FWHM, V x H, mrad², typ.)	All	2 X 1	3 X 1	3 X 1	3 X 1	3 X 1	
	Part No. (F-Version)	All	1124409	1113836	1113838	1115129	1115131	
	Part No. (XeCl-Version)	All	-	1113837	1113839	1115130	1115132	
Weight/Utilities/ Dimensions	Weight COMPexPro 50/100 COMPexPro 200		270 kg/591 lb 325 kg/716 lbs					
				Water, 2 to 3 l/min. (0.5 to 0.8 gal./min.), 15 to 20°C, required for repetition rates above 20 Hz				
	Electrical	230 V ±10%, 16 A (50/60 Hz, 1-Phase) 208 V ±10%, 16 A (50/60 Hz, 1-Phase)						
			120 V ±10%, 25 A (50/60 Hz, 1-Phase) 104 V ±10%, 25 A (50/60 Hz, 1-Phase)					
	Dimensions (L x W x H)							
	COMPexPro 50/100 COMPexPro 200		3,3 ,	93 mm (51 x 15 x 93 mm (67 x 15 :	,			

Laser Selection Guide

¹ Measured at 10 Hz. 2 Measured at maximum repetition rate.

COHERENT.

BraggStar M

Excimer Lasers

The BraggStar M delivers high pulse energy and great spatial coherence for Fiber Bragg Grating (FBG) writing. High pulse energy is a critical advantage in some FBG writing applications, and high spatial coherence is always beneficial since it enables creation of FBGs with higher contrast and/or longer length.

The BraggStar M uses a coherence enhanced optical design at the typical FBG-wavelength of 248 nm

resulting in significantly higher spatial coherence compared to conventional broad-use excimer lasers. It stands out due to its compact design and the ease of operation. The new BraggStar M builds on the field-proven COMPex platform with more than 2500 installed units worldwide specifically designed for high reliability and longevity.

Λ	cc	_	_	.:	_	_
н	C.C.	-	OI	ш	e	۹,

Part No.	Product Description
1149339	Beam Aligner
1132990	Temperature Stabilization Module
262856	Upgrade Kit VCR (VCR gas connections instead of regular Gyrolok)

BraggStar M

Excimer Lasers

 Key Features Coherence Optimized Resonator Compact Design, Air-Cooled (up to 20 Hz), Single Phase 		Customer BenefitsEnables the writing of large area high contrast FBGs		
•		Quick and easy integration		
Ceramic Pre	ionization	Unmatched pulse-to-pulse stability		
• Ceramic Fre	ionization	•		
		 Increased static gas lifetime 		
pecifications	Wavelength (nm)	248		
	Pulse Energy¹ (mJ)	140		
	Average Power ² (W)	12		
	Maximum Repetition Rate (Hz)	100		
	Pulse Duration (ns, typ.)	20		
	Energy Stability (1 sigma, %)	1		
	Beam Dimensions (FWHM, V x H, mm ² , typ.)	12 X 4.5		
	Beam Divergence (FWHM, V x H, mrad ² , typ.)	<0.3 x 0.2		
	Spatial Coherence (short axis, FWHM, µm, typ.)	800		
	Part No.	1213132		
/eight/Utilities/	Weight	270 kg/591 lbs.		
Pimensions	Cooling	Water, 2 to 3 l/min. (o.5 to o.8 gal./min.), 15 to 20°C, required for Repetition Rates above 20 Hz		
	Electrical (50/60 Hz, 1-Phase)	230 V ±10%, 16 A		
		208 V ±10%, 16 A		
		120 V ±10%, 25 A		
		104 V ±10%, 25 A		
	Dimensions (L x W x H)	1282 x 375 x 793 mm (67 x 15 x31 in.)		
	1 Measured at 10 Hz.			

Fax: (800) 362-1170

² Measured at maximum repetition rate.

LPXpro

Excimer Lasers

LPXpro is a family of RoHS compliant excimer lasers, offered at wavelengths of 193 nm, 248 nm, 308 nm and 351 nm, with output powers as high as 80W at 248 nm. The LPFpro family expands wavelength range to vacuum UV with 157 nm. The beam quality, high pulse energy, short pulse length, and high peak power of LPXpro and LPFpro lasers combine to optimize UV applications.

These characteristics, plus their proven reliability and low cost of ownership, make LPXpro lasers suitable for a wide range of demanding, high precision processing tasks. These include drilling, pulsed laser deposition (PLD), laser direct patterning (LDP), laser lift off (LLO) and cleaning.

Accessories

Part No.	Product Description
26083020	Unstable Resonator Optics 193 nm (external resonator configuration)
26083120	Unstable Resonator Optics 248 nm (external resonator configuration)
26083220	Unstable Resonator Optics 308 nm (external resonator configuration)
26083320	Unstable Resonator Optics 351 nm (external resonator configuration)
26083010	Unstable Resonator Optics 193 nm (LPXpro 240)
26083110	Unstable Resonator Optics 248 nm (LPXpro 240)
262856	Upgrade Kit VCR Gas Connections
1218314	Beam Aligner

LPXpro

Excimer Lasers

Key Features	Customer Benefits
Adaptable Resonator Configuration	 Fit to application requirements
Flexible Pulse Energy	Advanced process control
• F-version	• 193 nm, 248 nm, 351 nm operation
• C-version	• 308 nm operation
True Specs	Reliable long-term operation
Internal Burst Generator	Programmable laser pulses
Rugged Laser Frame	Unmatched beam stability
Longest Gas Life	Low operation costs

Specifications	Wavele	ngth¹ (nm)	LPXpro 210	LPXpro 220	LPXpro 240	LPXpro 305	LPFpro 205	LPFpro 220
	Max. Pulse Energy (mJ)	157	-	-	-	-	50	40
	up to 10 Hz	193	450	300	160	600	400	250
		248	800	550	300	1100	-	-
		308	500	300	-	700	-	-
		351	400	-	-	400	-	-
	Max. Stabilized Pulse Energy (mJ)	157	-	-	-	-	-	-
	at Full Repetition Rate	193	300	250	80	400	-	-
		248	700	400	160	800	-	-
		308	450	275	-	600	-	-
		351	200	-	-	300	-	-
	Max. Rep. Rate (Hz)	all	100	200	300/400²	50	50	200
	Max. Stabilized Average Power (W)	157	-	-	-	-	2.5 ³	7³
	at Full Repetition Rate	193	30	50	24	20	15³	40 ³
		248	70	80	64	40	-	-
		308	45	55	-	30	-	-
		351	351 20	-	-	15	-	-
	Energy Stability (at 5 Hz, 1 sigma, %)	248	<u><</u> 1	<u><</u> 1	<u><</u> 2	<u><</u> 1	<u>≤</u> 10⁴	<u>≤</u> 10 ⁴
	Pulse Duration (FWHM, ns, typ.)	248	25	20	15	25	-	-
	Avg. Beam Dimensions (V x H, FWHM, mm², typ.)	248	12 X 24	8 x 24	8 x 22	12 X 30	10 X 24 ⁴	10 X 24 ⁴
	Beam Divergence (V x H, FWHM, mrad², typ.)	248	<u>≤</u> 1 x 3	<u>≤</u> 1 x 3	<u>≤</u> 1 x 3	<u><</u> 1 × 3	≤2 x 6 ⁴	<u>≤</u> 2 x 6⁴
	Part No. (F-Version, 400V)		1120125	1120129	1152299	1120133	1120137	1120139
	Part No. (F-Version, 208V)		1120126	1120130	1152300	1120134	1120138	1120140
	Part No. (C-Version, 400V)		1120127	1120131	-	1120135	-	-
	Part No. (C-Version, 208V)		1120128	1120132	-	1120136	-	-
Weight/Utilities/	Weight							
Dimensions	LPFpro/LPXpro 200		400 kg/880 lbs.					
	LPXpro 305	LPXpro 305		430 kg/946 lbs.				
	Cooling		Water, <7 l/min. (1.8 gal./min.), 15 to 20°C					
	Electrical		208 or 400 VAC, 50/60 Hz, 3-phase					
	Dimensions (L x W x H)							
	Laser Head		1966 x 800 x 475 mm (77 x 32 x 19 in.)					
	Power Supply		750 x 460 x 185 mm (30 x 18 x 7 in.)					
	² At 193 nm (300 Hz only).	1 157 nm with LPFpro only; 193 nm, 248 nm, and 351 nm with LPXpro F-version only; 308 nm with LPXpro C-version only. 2 At 193 nm (300 Hz only). 3 Max. average power at maximum high voltage. Max. stabilized power not specified for LPFpro.						

LEAP

Excimer Lasers

LEAP is a series of high duty-cycle excimer lasers, offered at wavelengths 248 nm and 308 nm, with output powers as high as 130W. The beam quality, high stabilized pulse energy of 650 mJ, short pulse length and high peak power of LEAP lasers combine to optimize UV manufacturing applications. These

characteristics, plus their reliability and economy, make LEAP lasers suitable for a wide range of demanding, high-precision processing tasks. These include micro drilling and structuring, laser direct patterning (LDP), and surface treatment.

Accessories

Part No.	Product Description
1150265	Fork Lift Slot Set
1150266	Transportation Wheels
1138927	Unstable Resonator Optics 248 nm (LEAP 130K)

LEAP

Excimer Lasers

 Precise "cold" ablation with micron resolution
Efficient processing with large area per pulse
Cost efficient operation in many applications
Large area processing with reduced TACT Time
Solid-state laser excitation
•

	LEAP 130K	LEAP 130C	
Wavelength (nm)	248	308 550 to 650	
Stabilized Pulse Energy Range (mJ)	550 to 650		
Maximum Stabilized Average Power (W)	130	130	
Maximum Repetition Rate (Hz)	200	200	
Energy Stability (sigma, %)	<u>≤</u> 1.5	<u>≤</u> 1.5	
Pulse Duration (FWHM)(ns)	28	22	
Average Beam Dimensions (V x H, FWHM, mm ² , typ.)	33 X 12	33 X 14	
Beam Divergence (V x H, FWHM, mrad)	≤4.5 X 1.5	≤4.5 X 1.5	
Dynamic Gas Lifetime (at max. stabilized energy) (mio. pulses)	>30	>30	
Part No. (200/208V)	1165692 LEAP 130K Excimer Laser 248 nm; 200/208V 1165694	1165693	
		LEAP 130C Excimer Laser 308 nm; 200/208V	
Part No. (400V)		1165695	
	LEAP 130K Excimer Laser 248 nm; 400V	LEAP 130C Excimer Laser 308 nm; 400V	
Weight	850 kg/1874 lbs.		
Cooling	Water, 20 l/min. (37 gal./min.), 19 to 21°C		
Electrical	8.6 kVA, 3-phase, 200/208 VAC or 400 VAC, 50/60 Hz		
Dimensions (L x W x H)	2415 x 800 x 1130 mm ³ (95.1 x 31.4 x 44.5 in. ³)		
	Stabilized Pulse Energy Range (mJ) Maximum Stabilized Average Power (W) Maximum Repetition Rate (Hz) Energy Stability (sigma, %) Pulse Duration (FWHM)(ns) Average Beam Dimensions (V x H, FWHM, mm², typ.) Beam Divergence (V x H, FWHM, mrad) Dynamic Gas Lifetime (at max. stabilized energy) (mio. pulses) Part No. (200/208V) Part No. (400V) Weight Cooling Electrical	Wavelength (nm)248Stabilized Pulse Energy Range (mJ)550 to 650Maximum Stabilized Average Power (W)130Maximum Repetition Rate (Hz)200Energy Stability (sigma, %)\$\frac{1}{2}\$1.5Pulse Duration (FWHM)(ns)28Average Beam Dimensions (V x H, FWHM, mm², typ.)33 x 12Beam Divergence (V x H, FWHM, mrad)\$\frac{4}{2}.5 \times 1.5\$Dynamic Gas Lifetime (at max. stabilized energy) (mio. pulses)>30Part No. (200/208V)1165692LEAP 130K Excimer Laser 248 nm; 200/208VPart No. (400V)1165694LEAP 130K Excimer Laser 248 nm; 400VWeight850 kg/1874 lbs.CoolingWater, 20 l/min. (37 gal./min. lectrical)Electrical8.6 kVA, 3-phase, 200/208V	

Laser Selection Guide

Applications

Excimer Lasers

UV Optical Systems

Customer Suppor

LAMBDA SX

Excimer Lasers

The LAMBDA SX industrial excimer laser series provides unique high UV power to the production floor. It is designed to deliver the best energy stability available, and also features a number of innovative technologies for unsurpassed performance and reliability.

PowerLok

The proprietary PowerLok technology brings every pulse of a burst train to the desired energy level. It employs a self-learning algorithm, using a look-up table to smooth out cycling bursts. PowerLok is available on 300 Watts class models.

TimeLok

The proprietary TimeLok technology stabilizes the trigger-to-pulse delay of all solid-state HV switch-driven excimer lasers and minimizes the time jitter. It also employs a self-learning algorithm, using a look-up table for delay stabilization in any operation mode.

Onboard Logging/ExiScope

Laser parameters like HV, energy and sigma are recorded in data files. These files can easily be analyzed by the optional ExiScope software in order to track and improve laser performance. ExiScope serves as a virtual scope for evaluation of complex information available from the laser data files. Furthermore, the lasers can optionally be equipped with pulse shape analysis modules consisting of fast photo diode and digitizer module.

Optional Remote Beam Adjustment

LAMBDA SX lasers can optionally be equipped with motorized optics mounts which allow remote adjustment of the laser resonator by hand-held terminal. LAMBDA SX lasers are designed for 400VAC 3-phase with Neutral line supply. Mains cable is not supplied. Transformers to be configured for 190, 200, 208, 220, 360, 380, 420, 440, and 480VAC 3-phase line voltage are optionally available.

Acc	esso	ries

Part No.	Product Description	
1258993	Analysis Software ExiScope	
1269634	Additional EMO Button Guard, SEMI	
1180124	15 meter Cable for Hand-held Terminal (5 meter cable comes with laser)	
1232579	Pulse Shape Analysis Module incl. Fast Photodiode and Digitizer	
1224269	Fast Photodiode Mounted (external Oscilloscope required)	
1270173	Mains Cable LAMBDA SX, 30 kVA, 25m	
1228700	Mains Cable LAMBDA SX, 60 kVA, 25m	
1136303	STEP UP TRANSFORMER 30 kVA	
1136304	STEP UP TRANSFORMER 60 kVA	

LAMBDA SX K-Series and C-Series

Excimer Lasers

Key Features	Customer Benefits
Industrial Design	 Rugged and reliable
	 Unmatched laser beam stability
Industrial Interfaces	Integrated industrial PC
	Ethernet interface
	 Direct Control Port (DCP) hard wired interface
Sealed and Purged Beam Path	Long optics lifetimes
Highest UV Laser Power	Lowest costs per Watt UV
Adjustable Pulse Energy	Advance process control

The K-Series and C-Series LAMBDA SX lasers are multipurpose KrF and XeCl excimer lasers, respectively, providing 248 nm or 308 nm high power UV. The lasers are ideal for high throughput micro structuring, industrial Pulsed Laser Deposition, Laser Lift-Off, and more.

Specifications ¹		LAMBDA SX K300	LAMBDA SX C300	LAMBDA SX C600	
	Wavelength (nm)	248	308	308	
	Maximum Stabilized Pulse Energy (mJ)	1000	1000	1000	
	Maximum Stabilized Average Power (W)	300	300	600	
	Maximum Repetition Rate (Hz)	300	300	600	
	Energy Stability (sigma, %)	<u>≤</u> 1.2	<u>≤</u> 1	<u>≤</u> 1	
	Pulse Duration (FWHM)(ns)	32 ±5	29 ±5	24 ±4	
	Beam Dimensions ² (FWHM, V x H, mm ²)	34 ±3.5 × 14 ±2	35 ±3.5 X 13 ±2	35 ±4 × 14.5 ±3	
	Beam Divergence (FWHM, V x H, mrad²)	<u>≤</u> 4.5 x 1.5	<u>≤</u> 4.5 X 1.5	<u>≤</u> 4.5 X 1.5	
	Dynamic Gas Lifetime (at max. stabilized energy)(mio. pulses)	40	60	60	
	Part No.	1232152 LAMBDA SX K300, 400 VAC, 50/60 Hz	1273596 LAMBDA SX C300, 400 VAC, 50/60 Hz	1232149 LAMBDA SX C600, 400 VAC, 50/60 Hz	
Weight/Utilities/ Dimensions	Weight	2000 kg/4409 lbs.	2100 kg/4630 lbs.	2200 kg/4850 lbs.	
	Cooling	Water, 1 to 25 l/min. (0.3 to 6.6 gal./min.), 10 to 15°C	Water, 3 to 28 l/min. (o.8 to 7.4 gal./min.), 10 to 15°C	Water, 3 to 70 l/min. (o.8 to 18.5 gal./min.), 12 to 15°C	
	Electrical	19 kVA, 3-phase, 400 VAC, 50/60 Hz	22 kVA, 3-phase, 400 VAC, 50/60 Hz	40 kVA, 3-phase 400 VAC, 50/60 Hz	
	Dimensions (L x W x H)	2800 x 850 x 2083³ mm (110.2 x 33.3 x 82 in.)	2800 x 850 x 2083³ mm (110.2 x 33.3 x 82 in.)	2800 x 850 x 2083³ mm (110.2 x 33.3 x 82 in.)	
	All specifications are subject to change without prior notice in order to provide the best product possible.				

Toll Free: (800) 527-3786

LAMBDA SX-Series **Hand-held Control Panel**

25 Tel: (408) 764-4983 Fax: (800) 362-1170

² Beam dimensions measured at 1.0m from beam exit.

 $^{^{3}}$ ±20 mm (0.8 in.).

LAMBDA SX for Excimer Laser Annealing

Excimer Lasers

COHERENT.

The LAMBDA SX E-Series is specially designed for Excimer Laser Annealing (ELA) at 308 nm. The high quality demand in OLED and high resolution LCD display manufacturing requires high grade low temperature poly-Silicon (LTPS) which can be created only with high performance excimer lasers.

COHERENT.

Excimer Lasers

Key Features	Customer Benefits
Best Pulse Stability	High annealing homogeneity
Stable Beam Parameter	High annealing yield

LAMBDA SX for Excimer Laser Annealing

Specifications ¹		LAMBDA SX E300	LAMBDA SX E500	
	Wavelength (nm)	308	308	
	Maximum Stabilized Pulse Energy (mJ)	1050	1000 500 500 ≤0.45 24 ±4 35 ±4 × 14.5 ±3	
	Maximum Stabilized Average Power (W)	315		
	Maximum Repetition Rate (Hz)	300		
	Energy Stability (sigma, %)	≤0.8		
	Pulse Duration (FWHM)(ns)	29 ±5		
	Beam Dimensions ² (FWHM, V x H, mm ²)	35 ±3.5 × 13 ±2		
	Beam Divergence (FWHM, V x H, mrad ²)	<u>≤</u> 4.5 x 1.5	<u>≤</u> 4.5 × 1	
	Dynamic Gas Lifetime (at max. stabilized energy) (mio. pulses)	60	60	
	Part No.	1232150 LAMBDA SX E300, 400 VAC, 50/60 Hz	1232151 LAMBDA SX E500, 400 VAC, 50/60 HZ	
Weight/Utilities/	Weight	2100 kg/4630 lbs.	2200 kg/4850 lbs.	
Dimensions	Cooling	Water, 3 to 28 l/min. (3.2 to 6.6 gal./min.), 10 to 15°C	Water, 3 to 70 l/min. (3.2 to 6.6 gal./min.), 10 to 15°C	
	Electrical	22 kVA, 3-phase, 400 VAC, 50/60 Hz	40 kVA, 3-phase, 400 VAC, 50/60 Hz	
	Dimensions (L x W x H)	2800 x 850 x 2083³ mm (110.2 x 33.3 x 82 in.)	2800 x 850 x 2083³ mm (110.2 x 33.3 x 82 in.)	

¹ All specifications are subject to change without prior notice in order to provide the best product possible.

LAMBDA SX-Series Hand-held Control Panel

² Beam dimensions measured at 1.0m from beam exit.

³ ±20 mm (0.8 in.).

VYPER

Excimer Lasers

The VYPER is a double beam or quad beam (TwinVYPER) very high power excimer laser specially designed for Excimer Laser Annealing (ELA). The high quality demand in high resolution mobile display manufacturing requires high grade low temperature poly-Silicon (LTPS) which can be created only with high performance excimer lasers. The VYPER laser fits perfectly to the high power LineBeam 750 and 1300 (TwinVYPER) optics.

TimeLok/EquiSwitch

The proprietary TimeLok and EquiSwitch technologies synchronize the two laser beams perfectly to a deviation of below 5 ns.

Onboard Logging/ExiScope

Laser parameters like HV, energy and sigma are recorded in data files. These files can easily be analyzed

by the optional ExiScope software in order to track and improve laser performance. ExiScope serves as a virtual scope for evaluation of complex information available from the laser data files. Furthermore, the lasers can optionally be equipped with pulse shape analysis modules consisting of fast photo diode and digitizer module.

Optional Remote Beam Adjustment

VYPER lasers can optionally be equipped with motorized optics mounts which allow remote adjustment of the laser resonator by hand-held terminal.

VYPER lasers are designed for 2x400VAC or 4x400VAC (TwinVYPER) 3-phase with Neutral line supply. Mains cables are not supplied. Transformers to be configured for 190, 200, 208, 220, 360, 380, 420, 440, and 480VAC 3-phase line voltage are optionally available.

A		•
Acc	PSS (ories

Part No.	Product Description
1226717	Analysis Software ExiScope
1269634	Additional EMO Button Guard, SEMI
1187052	Cable Duct, 160 x 80 x 1200 mm
1224269	Fast Photodiode Mounted (external Oscilloscope required)
1255022	Motorized Optics Modules VYPER
1202009	Pulse Shape Analysis Module incl. Fast Photodiode and Digitizer
1207313	Upgrade Kit, 1200 Hz Operation, VYPER
1180124	15 meter Cable for Hand-held Terminal (5 meter cable comes with laser)
Two transformers / mains cab	oles per VYPER required.
1228700	Mains Cable LAMBDA SX, 60 kVA, 25m
1136304	STEP UP TRANSFORMER 60 kVA

VYPER

Excimer Lasers

Key Features

- Highest UV pulse energy of 2 Joule/4 Joule at 600 Hz repetition rate
- Best energy stability
- Rugged field proven technology
- TimeLok trigger-to-pulse stabilization
- Hand-held terminal with advanced laser-control software
- Interface for full remote control
- Purged external resonator design for long-life laser optics and optimum beam-pointing stability
- Maintenance-free solid-state switch
- · Onboard data recording

Specifications		VYPER	TwinVYPER
	Wavelength (nm)	308	308
	Maximum Stabilized Pulse Energy (mJ)	2000	4000
	Maximum Stabilized Average Power (W)	1200	2400
	Maximum Repetition Rate (Hz)	600	600
	Energy Stability (sigma, %)	≤0.45	≤0.45
	Pulse Duration (FWHM)(ns)	24 ±4	24 ±4
	Average Beam Dimensions (FWHM, V x H, mm ²)	35 ±4 × 14.5 ±3 (2x)	35 ±4 × 14.5 ±3 (4×)
	Beam Divergence (FWHM, V x H, mrad²)	≤4.5 x 1.3 (2x)	≤4.5 x 1.3 (4x)
	Dynamic Gas Lifetime (at max. stabilized energy)(mio. pulses)	100	100
	Part No.	1254976	1258061
		VYPER, 400 VAC 50/60 Hz	TwinVYPER, 50/60 Hz
Weight/Utilities/	Weight	4400 kg/9700 lbs.	8800 kg/19,400 lbs.
Dimensions	Cooling	Water, up to 2x 70 l/min. (18.5 gal./min.), 12 to 15°C	Water, up to 4x 70 l/min. (18.5 gal./min.), 12 to 15°C
	Electrical	2x 39 kVA, 3-phase, 400 VAC, 50 or 60 Hz	4x 39 kVA, 3-phase, 400 VAC, 50 or 60 Hz
	Dimensions (L x W x H)	2800 x 1700 x 2085 mm (110 x 66.9 x 82 in.)	2800 x 1700 x 2085 mm (110 x 66.9 x 82 in.)

Laser Selection Gui

On-Site Requirements

Excimer Lasers

On-site preparation is required before an excimer laser can be installed. The following is a brief overview. For detailed information, please refer to the Site Preparation Manual, which is available from your Coherent representative.

Power Supply

Excimer laser power requirements vary by model and can be either single-phase (115V, 50/60 Hz or 230V, 50/60 Hz) or three-phase (200/208V, 50/60 Hz or 400V, 50/60 Hz).

To determine the power requirements and wall-plug configuration for a particular model, please refer to the laser specifications.

Gas Supply

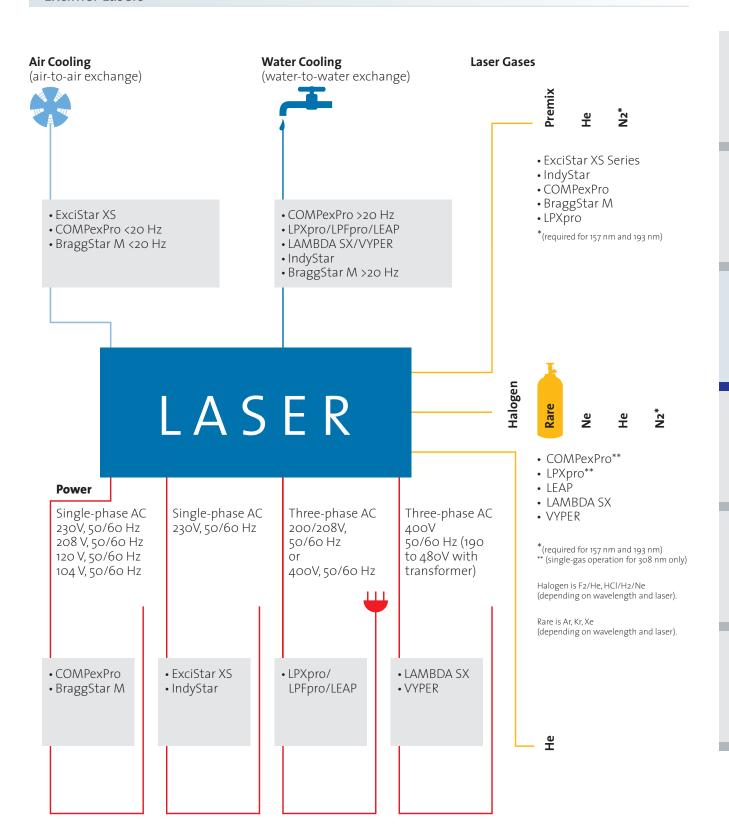
The active medium of an excimer laser is a mixture of a rare gas (argon, krypton or xenon), a halogen (fluorine or hydrogen chloride), and a buffer gas (helium or neon). In addition to the premixed gas, another gas (in most cases, nitrogen) is needed to purge the laser beam and, for certain service procedures, a flush gas (helium) is also required. For more information about gas handling and installation, please refer to the site preparation manual.

Cooling

Excimer lasers have overall efficiencies of about 2% or 3%. Most of the dissipated electrical energy of the laser discharge is transformed into heat. Low duty cycle excimer lasers are usually air-cooled. However, at medium to high powers and a high duty cycle, most excimer lasers need water or external heat exhangers for cooling. For information about individual laser cooling requirements, please ask for detailed specifications about a system.

Exhaust Ventilation

At the installation site, the laser system must be connected to an exhaust ventilation system. COMPexPro, LPXPro, LAMBDA SX, and VYPER have their own ventilation fans, which guarantee the required negative pressure. For detailed information about individual exhaust ventilation requirements, please refer to the Site Preparation Manual.


Beam Path Purging

Excimer laser operation at 157 nm and 193 nm requires purging of the beam path with nitrogen in order to avoid absorption by ambient air.

On-Site Requirements

Excimer Lasers

s Excimer Lasers UV Op

31

UV Optical Systems, Modules and Components

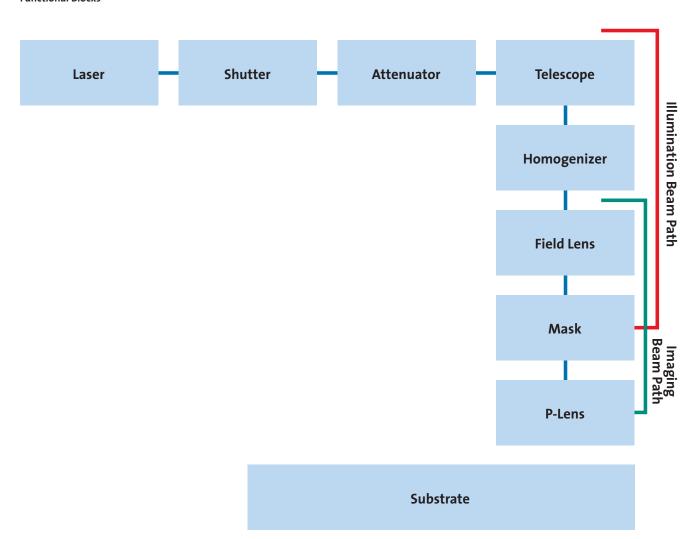
UV Optical Systems

Customized Optical Systems for a wide range of R&D applications.

Modular System Approach

UV optical systems usually include a set of blocks that form the illumination beam path and the imaging beam path. The optical system shapes and homogenizes the laser radiation to illuminate a mask that contains the desired pattern. This mask, whose pattern can easily be changed, is then imaged with a projection lens onto the substrate.

Using this technique provides an easy way to build dedicated optical beam delivery systems for a wide range of applications.


In addition to our optical and laser products, we also perform feasibility studies, application lab sample preparation/testing, and offer small-scale job shop opportunities to customers around the world.

UV Optical Systems, Modules and Components

UV Optical Systems

Functional Blocks

Laser Selection Guide

Applications

Excimer Lasers

UV Optical Systems

cascoller aubborn

LMC Accessories

Toll Free: (800) 527-3786 • Tel: (408) 764-4983 • Fax: (800) 362-1170

COHERENT.

UVblade

Systems for Laser Lift-Off Applications

UV*blade*380

Laser lift-off is the key technology in manufacturing flexible digital displays where thin-film transistor device structures are typically fabricated directly onto a polymer layer that has been spun on a glass substrate.

UV*blade* selectively detaches the polymer-based displays of all types from their rigid glass carriers. UV*blade* supports glass substrate generations up to Gen 8.

UV*blade*750

UVblade

Systems for Laser Lift-Off Applications

Key Features

- Cost effective laser optical solutions for Laser Lift-Off (LLO)
- Single shot processing
- Highest beam utilization
- Homogeneous energy distribution
- Includes Coherent excimer laser

Specifications ¹		UV <i>blade</i> 250	UV <i>blade</i> 380	UV <i>blade</i> 465	UV <i>blade</i> 750
	Wavelength (nm)	308	308	308	308
	Laser Pulse Energy (mJ)	580	580	900	950
	Repetition Rate (Hz)	200	200	300	300
	Energy Density Plateau¹ (mJ/cm²)	270	235	235	235
	Beam Length ² (mm)	250	380	465	750
	Beam Width² (µm)	400	300	400	250
	Homogeneity Long Axis ²	≤1.8%, 2 sigma	≤1.8%, 2 sigma	≤1.8%, 2 sigma	<1.8%, 2 sigma
	Steepness Short Axis (µm)	≤100	<u>≤</u> 70	<u>≤</u> 70	≤70
	Depth of Focus (DOF)(µm)	±200	±200	±150	±100

Options

BeamScout Beam Profiler Package

Laser Selection Gui

Annlication

Excimer Laser

Toll Free: (800) 527-3786 • Tel: (408) 764-4983 • Fax: (800) 362-1170

¹ EDp measured at FWHM of small axis.

² More details on specs on request.

COHERENT.

LineBeam

Systems for Excimer Laser Annealing

TwinVYPER excimer laser with LB1300 beam delivery

LineBeam for Excimer Laser Annealing (ELA) of typically 50 nm to 120 nm thick amorphous silicon films on large flat panel display glass substrates transferred into industrial production in the mid 90s. This technique is progressing to even longer line beams for annealing larger areas, employing new excimer lasers with more and more pulse energy.

LineBeam

Systems for Excimer Laser Annealing

Key Features

- Excellent beam profile homogeneity
- Outstanding optical lifetime performance
- Display industry proven technology, large installation base world wide
- Standard technology for silicon annealing process (LTPS-LCD, OLED)

Specifications	LineBeam	LB465	LB750	LB1000	LB1300	
	Wavelength (nm)	308	308	308	308	
	Laser Pulse Energy (mJ)	1050	2000	4000	4000	
	Energy Density (mJ/cm²)					
	Specification	≥350	<u>></u> 430	≥435	≥435	
	Typical Value	460	500	490	490	
	Beam Length (mm)	465	750	1000	1300	
	Beam Width (µm)	350	400	580	450	
	Homogeneity Long Axis					
	Specification	≤1.8%, 2 sigma	≤1.8%, 2 sigma	≤1.8%, 2 sigma	≤1.8%, 2 sigma	
	Typical Value	<u>≤</u> 1.1%, 2 sigma	≤1.0%, 2 sigma	≤1.0%, 2 sigma	<u>≤</u> 1.0%, 2 sigma	
	Steepness Short Axis (µm)	<u><</u> 125	<u><</u> 125	<u><</u> 125	<u><</u> 125	
	Depth of Focus (µm)	±150	±150	±120	±120	
Options	Micro Smoothing Device					
-	Short Axis Fine Tuner					
	Beam Profiler					
	Pulse Expander Module					
	Beam Stabilization Unit					
	Beam Symmetry Generator					
	Short Axis Online Monitor					
	CB E-Sigma Monitor					
	P-Lens Entrance Monitor					
	SB E-Sigma Monitor					

Laser Selection Guide

Excimer Lasers

UV Optical Systen

VarioLas Family

UV Optical Systems - Material Processing Systems

VarioLas UV material processing systems based on the COMPexPro 100 excimer laser series are affordable tools for high quality UV microprocessing. Superior optics design, rugged mechanics and unmatched pulseto-pulse stability are the key ingredients in each of the VarioLas systems which are available for the common excimer laser wavelengths 193 nm, 248 nm and 308 nm.

VarioLas mask imaging systems ECO and PRO provide micromachining resolutions of 30 μ m and 5 μ m, respectively, at a field size of 2 x 2 mm² and are ideal for

machining of all kinds of materials such as polymers, semiconductors, ceramics or glasses.

The VarioLas SWEEP supports scanned, large-area processing with a $50 \times 0.6 \text{ mm}^2$ line beam for applications such as dopant activation of wafers and surface annealing.

A	:
Accesso	ries

Part No.	Safety Options
1161813	Class 1 Housing
1161812	Automated Safety Class 3 Interlock Circuit
1107556	Automated Beam Shutter for 193 nm
1107557	Automated Beam Shutter for 248 nm
1157558	Automated Beam Shutter for 308 nm

Part No.	Control Options
1161814	Control PC (with monitor)
1161815	Substrate Stage (3-axes incl. substrate chuck)
1161816	Observation Unit (for VarioLasPRO, 193 nm)
1161817	Observation Unit (for VarioLasPRO, 248 nm/308 nm)
1161818	Observation Unit (for VarioLasECO, all wavelengths)
1161819	Motorized Attenuator (upgrade)
1161820	Mot. Attenuator, Energy Control, PRO/ECO, 193 nm
1161821	Mot. Attenuator, Energy Control, PRO/ECO, 248 nm
1161822	Mot. Attenuator, Energy Control, PRO/ECO, 308 nm

VarioLas Family

UV Optical Systems - Material Processing Systems

Key Features	Customer Benefits
High Energy Excimer Laser Inside	 Superior pulse-to-pulse stability
	Largest on-sample fluence range
	 Hands-off operation over weeks
Rock Solid Optical and Mechanical Design	Maintenance-free operation
	 Unmatched processing stability
Modular Concept with Upgrading Options	 Customizable from optical beam train to ready-to-use workstation

Specifications ¹		Wavelength	VarioLasECO	VarioLasPRO	VarioLasSWEEP	
•	Field Geometry	All	Square	Square	Line	
	Mask Field Size (mm²)	All	20 X 20	20 X 20	-	
	Substrate Field Size (mm²)	All	2 X 2	2 X 2	50 x 0.6	
	Resolution (µm)	All	30	5	-	
	Working Distance (mm)	All	50	50	150	
	Maximum Repetition Rate ² (Hz)	All	100	100	100	
	Maximum Energy Density (mJ/cm ²)	193	1000	1000	230	
		248	3500	3500	600	
		308	3000	3000	500	
	Energy Stability (%, rms)	193	2	2	2	
		248	1	1	1	
		308	1	1	1	
	Pulse Width (ns)	193	15	15	15	
		248	20	20	20	
		308	20	20	20	
	Part No. ³	193	1156386	1156390	1156394	
		248	1156387	1156391	1156395	
		308	1156388	1156392	1156396	
Weight/Utilities/	Weight					
Dimensions	VarioLas beam delivery system	500 kg/1100 lbs.				
	COMPexPro 102/110 laser model	250 kg/551 lbs.				
	Cooling	Air (if used with COMPexPro 102 laser model)				
	0	Water, 2 to 3 l/min. (0.5 to 0.8 gal./min.), 15 to 20°C				
	Electrical	230V, ±10%, 16A, 50/60 Hz switchable, 1-phase				
		115V, ±10%, 25A, 50/60 Hz switchable, 1-phase				
	Options	20 Hz or 100 Hz COMPexPro 100 laser model				
	Dimensions (L x W x H)	3300 x 1200 x 1830 mm (131 x 48 x 73 in.)				

All specifications are typical data and are subject to change without prior notice in order to provide the best product possible.
 With COMPexPro 110 laser model (Maximum 20 Hz with COMPexPro 102 laser model).
 VarioLas beam delivery requires COMPexPro 102 or 110 laser model.

Laser Selection Guide

COHERENT.

GeoLasHD

UV Optical Systems - Solid Sampling System for LA-ICP-MS

The GeoLasHD makes the most out of today's advanced mass spectrometers. It provides unmatched energy densities ranging from 1 J/cm² up to 50 J/cm² for material-independent solid sampling. GeoLasHD uses sophisticated homogenizing optics to ensure accurate and shallow depth control, along with flatbottom craters. Using 193 nm wavelength in solid

sampling produces smaller particle sizes, highest signal intensities and lowest intrinsic fractionation due to optimum material-light interaction. GeoLasHD has a rigid design which is virtually maintenance-free and allows the user to focus on what he is really interested in – uncompromised solid sampling and data recording day after day.

Accessories

Part No.	Safety Options
1114417	Class 1 Housing
1099616	Manual Mask Slider Assembly
1179091	MMG Sample Cell
2910682	Mass Flow Controller

GeoLasHD

UV Optical Systems - Solid Sampling System for LA-ICP-MS

Key Features	Customer Benefits	
 High Energy 193 nm COMPexPro Inside 	 Superior pulse-to-pulse stability 	
	Hands-off operation over weeks	
Petrographic Microscope and EAGLE	 Superior observation capabilities 	
Software Package	Easy localization of fluid inclusions	
Large Range of Energy Densities	 Accurate ablation of all materials 	
	 Precise depth profiling with flat crater bottom 	
High Definition Ethernet Camera	Micron-Resolution Overview Mapping	
	Live Image Observation	

Specifications'		GeoLasHD		
•	Wavelength (nm)	193 1 to 50 1		
	Energy Density on Sample (J/cm²)			
	Optical Resolution (µm)			
	Spot Size at Sample (µm)	4 to 160		
	Pulse Stability (%, rms)	2		
	Beam Homogeneity (%, rms)	1		
	Repetition Rate (Hz)	1 to 100		
	X,Y-Drive Min. Step Size (µm)	O.1 O.1		
	Z-Focus Min. Step Size (µm)			
	Part No.			
	GeoLasHD	1294980		
Weight/Utilities/	Weight			
Dimensions	GeoLasHD system	395kg/871 lbs.		
	Cooling	Air		
	Electrical	230V, ±10%, 16A, 50/60 Hz switchable, 1-phase		
		115V, ±10%, 25A, 50/60 Hz switchable, 1-phase		
	Dimensions (L x W x H)	2470 x 1142 x 1440 mm (97 x 45 x 57 in.)		

¹ All specifications are typical data and are subject to change without prior notice in order to provide the best product possible.

Laser Selection Guide

Components - Attenuator Module

UV Optical Systems

Attenuator Module, Manual

Variable attenuation substrate $60 \times 35 \times 2 \text{ mm}^3$ with inverse characteristic for high thermal stability. Compensator plate $60 \times 35 \times 2 \text{ mm}^3$ to compensate for any beam displacement. With manual knob and digital scale for accurate transmittance setting. Electromagnetic shutter.

Attenuator Module, Motorized

Variable attenuation substrate $60 \times 35 \times 2 \text{ mm}^3$ with inverse characteristic for high thermal stability. Compensator plate $60 \times 35 \times 2 \text{ mm}^3$ to compensate for any beam displacement. With DC motor and encoder, ATM RS-232 interface module, interface cables, mini-controller and control software for Windows*. Electromagnetic shutter.

Attenuator Module for 157 nm

Leak-tight module housing with observation window. Variable attenuation substrate 60 x 35 x 2 mm³ with inverse characteristic for high thermal stability. Compensator plate 60 x 35 x 2 mm³ to compensate for any beam displacement. Manual knob and digital scale for transmittance setting. Electromagnetic shutter. Flanges for tube connections and vacuum exhaust. Purge gas inlet and exhaust gas outlet with gate valve

^{*} Windows is a registered trademark of Microsoft Corporation.

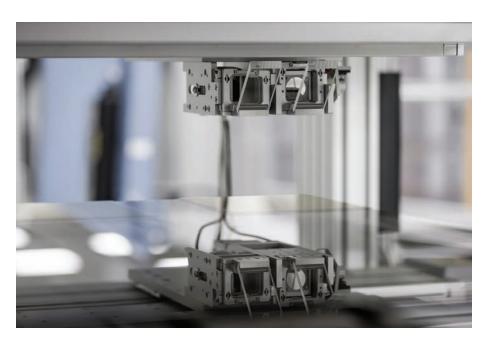
Specifications		Wavelength (nm)	Attenuator Module, Manual	Attenuator Module, Motorized	Attenuator Module for 157 nm
	Part No.	157			1111338
		193	2910218	1116186	
		248	2910216	2910566	
		308	1116181	1116184	
		351	1116182	2910568	

Components - Homogenizers

UV Optical Systems

Superior Optics and Coatings

Because excimer lasers produce high-energy pulses of ultraviolet light, the materials used to make the optics must be carefully selected and the optics themselves must be carefully designed. You can rely on our deep knowledge and many years of experience to deliver the exact solutions you need.


	catio	

		Homogenizer 5x5	Homogenizer 10x10	Homogenizer 20x20
Homogenized Field Size (mm)		5 × 5	10 X 10	20 X 20
Zoom		±10%	±10%	±10%
Homogenei	ty	<±5%	<±5%	<±5%
Field Positio	n	Entrance aperture	Entrance aperture	Entrance aperture
Approx. 600 mm after Homogenizer Exit (depending on wavelength)		32 x 32 mm, overall size entrance-exit approx. 1100 mm (depending on wavelength)	29.6 x 29.6 mm, overall size entrance-exit approx. 1000 mm (depending on wavelength)	29.6 x 29.6 mm, overall size entrance-exit approx. 900 mm (depending on wavelength)
Other version	ns on request	Field dimensions from 4 x 4	mm up to 200 mm	
Part No. 193 nm		1116198	1116202	
248 nm		1116199	1116203	
	308 nm	1116200	1116204	
351 nm		1116201	1116205	

Components - Projection Lenses

UV Optical Systems

Specifications		P-lens 4-10x/4-xxx	P-lens 5x/18-xxx	P-lens 5x/30-xxx	Doublet 50-xxx	Doublet 100-xxx
	Wavelength (nm)				157	157
		193			193	193
		248	248		248	248
		308	308	308	308	308
		351			351	351
	Demagnification	4 to 10x (higher demagnification on request)	5X	5×	Variable	Variable
	Focal Length (mm) approx. 100			approx. 50	approx. 100
	lmage Field Diameter	4 mm	18 mm	30 mm	Depending on wavelength	Depending on wavelength
	Numerical Aperture	Depending on wavelength (diffraction-limited for all available wavelengths)	0.13 (diffraction-limited)	0.1 (diffraction-limited)	-	-
	Spatial Resolution	3 µm lines and spaces	2 µm lines and spaces	2.5 µm lines and spaces	50 μm lines and spaces	50 μm lines and spaces
	Working Distance	Depending on wavelength, use of eye piece, and demagnification	Depending on wavelength	Depending on wavelength	Approx. 35 mm	Approx. 70 mm
	Tracking Length	Depending on wavelength, use of eye piece, and demagnification	800 mm	1050 mm	Depending on wavelength and demagnification ratio	Depending on wavelength and demagnification ratio
	Transmission	>80%	>80%	>80%	-	-
	Part No. 157 nm				1116211	1116216
	193 nm	9680011			1116212	1116217
	248 nm	M290009	M290022	1137121	1116213	1116218
	308 nm	1116206	M290008	9680052	1116214	2921330
	351 nm	1116207			1116215	1116219

Service

Productivity Plus Service Agreement

With over 40 years of experience supporting critical laser environments, Coherent knows how important it is to establish lasting partnerships that enable our customers to achieve success today and well into the future. With Coherent's wide range of service products, everything you need is under one roof, designed to safeguard and enhance your investment.

- Value-based service agreement programs
- Custom Service Agreements to meet your unique needs
- Factory-trained service engineers across the globe
- Knowledgeable technical support that is only a phone call away
- On-site and factory-tailored training courses
- Certified high quality parts and accessories, consumables and upgrades, all designed exclusively for your Coherent laser along its lifecycles
- Customer documents (e.g., detailed manuals)

The Support you need to stay up and running

The Productivity Plus service agreement provides the highest level of customer care available anywhere. It goes beyond your warranty and guarantees the performance of your system. Productivity Plus (PPlus) protects your productivity and profitability from unexpected downtime and is available for most current Coherent products.

PPlus Service Agreements protect your investment with:

- Priority on-site service
- Preventative maintenance visits
- Unlimited access to the best tech support in the industry

PPlus Service Agreements save you money by:

- Protecting your investment in Coherent products
- Covering parts and labor
- Simplifying service costs

Coherent understands that each operation has its own support needs. We offer you a variety of support plans to choose from.

Productivity Plus

Product Description	PN for 12 month agreement	
ExciStar XS	1169709	_
IndyStar	1169710	
BraggStar M	1169717	
COMPexPro	1169717	
LPXpro/LPFpro	1169716	

Service

Training Programs

- Fully staffed training department at Coherent Goettingen
- Use the latest in presentation materials and techniques including manuals, video overheads and a fully equipped laboratory for hands-on training experience
- Train, re-train, update/improve FSE skills
- Train, to various levels, OEM FSE in a variety of laser types and applications
- End customer training when requested
- Factory and on site tailored training courses
- Class size restrictions are strictly enforced (max. of 4 trainees per class)

Training Courses

Product Line	A/1 day	A/2 days	AB/4 days	ABC/5 days
ExciStar XS	1170393	1170393	1170393	1170393
IndyStar series		1170394	1170394	1170394
COMPexPro series		1100554	1100554	1100554
LPXpro/LPFpro series		1100598	1100598	1100598

Product Line	A/2 days	AB/4 days	ABC/10 days
LEAP series	1170395	1170395	1170395
LAMBDA SX series	1154279	1154279	1154279
VYPER series	1192273	1192273	1192273
UV Optical Systems	1100604	1100604	1100604

Laser Selection Guide

Laser Measurement and Control Accessories

Matrix of Recommendations

	ExciStar XS 200 Hz	ExciStar XS 500 Hz	IndyStar	COMPexPro/ BraggStar M	LPXpro/ LPFpro	LEAP	LAMBDA SX 300 Hz	LAMBDA SX 600 Hz/VYPER
Power Measurement								
FieldMaxII-TO with PM1oX		•						
FieldMaxII-TO with PM30X			•					
FieldMaxII-TO with PM150-50XC'				•	• ²			
FieldMaxII-TO with PM150X					•	•2		
FieldMaxII-TO with PM300F-50X						•	•2	
FieldMaxII-TO with PM1K-100							•	•
Energy Measurement								
FieldMaxII-TOP with J-25MUV-xxx ³	•							
LabMax-TOP with J-25MT-10KHZ		•	• 4					
FieldMaxII-TOP with J-50MUV-xxx				•4	● ^{2,4}			
EnergyMax-USB Sensor J-25MUV-193								
EnergyMax-USB Sensor J-50MUV-248				•4	●2,4			
1								

¹ Air cooled operation.

- ² Depending on laser model and wavelength, limited operation at full power.
- ³ "xxx = 193" for 157 nm and 193 nm; "xxx = 248" for 248 nm, 308 nm and 351 nm.

FieldMaxII-TOP

1098580

FieldMaxII-TOP meters work with a broad range of thermopile, optical and pyroelectric sensors to measure power from nW to kW and energy from nJ to J in the UV. USB connectivity and PC applications software suite allow live monitoring of multiple meters and statistical analysis.

FieldMaxII-TO Meter LabMax-TOP Meter

Fax: (800) 362-1170

⁴ Heat sink required.

Laser Measurement and Control Accessories

Matrix of Recommendations

LabMax-TOP Meters

LabMax-TOP

1104622

LabMax meters are ideal for anyone who needs to analyze and monitor laser output. Data can be analyzed via statistical and trend analysis and stored in onboard flash memory for future retrieval with the File Manager tool.

Alternatively, data can also be processed directly on a PC through USB, RS-232, or by logging data to a USB flash drive attached directly to the meter. Installable applications software and LabVIEW drivers are provided to support PC interfacing. The LabMax display can be positioned at many different angles so customers can place it within the limited bench space typically available in a laser lab and still easily view the display. LabMax-TOP is directly compatible with most Coherent thermal, pyroelectric and semiconductor sensors. Used with EnergyMax sensors, LabMax-TOP can measure nJ to joules and up to 10 kHz.

PowerMax Power Sensors

PM₁₀X

1098423

PM3oX

1098498

PM150-50XC

1098443

PM150X

1098455 **PM300F-50X**

1098481

PM1KX-100

1152086

PowerMax PM-model thermopile sensors are compatible with FieldMaxII and LabMax meters (both -TOP and -TO models) and provide accurate measurement of average laser power. For excimer applications, our X-coating offers damage and bleaching resistance in the ultraviolet. NIST-traceability and spectral mapping of the sensor response, loaded into EEPROM for automatic wavelength compensation, ensures measurement accuracy throughout the ultraviolet.

PowerMax-USB/RS Sensors

Laser Measurement and Control Accessories

Matrix of Recommendations

EnergyMax Energy Sensors

J-25MT-10KHZ

1110747

J-25MUV-193

1110741

J-25MUV-248

1110745

J-50MUV-248

1110572

J-50MUV-193, no diffuser

1146237

J-50MUV-248, no diffuser

1146243

With the EnergyMax family of pyroelectric sensors, robust MaxUV, MaxBlack and diffuse metallic sensor coatings offer a high damage threshold and long-term stability, which is further increased on certain models with the use of optimized diffuser stacks. Spectral mapping of all sensors and diffusers allows easy wavelength compensation and ensures accuracy throughout the ultraviolet. The addition of thermal compensation gives measurement accuracy that is unaffected by ambient conditions and average power levels. The electronic design offers a very high dynamic range and highly accurate and linear repetition rate performance from large diameter sensors. Coupled with a robust mechanical and electronic design that provides excellent noise immunity, EnergyMax is ideally suited for measuring the pulse energy from excimer lasers.

EnergyMax-USB Energy Sensors

J-25MUV-193, no diffuser

1191448

J-50MUV-248

1191449

EnergyMax detectors with direct USB high speed 2.0 connection to PC. No meter needed! Power provided via USB connection. Fast 14-bit A/D converter with up to five digits measurement resolution.

EnergyMax Heat Sinks

Small Heat Sink for J-25 Model Sensors

1123430

Large Heat Sink for

J-50 Model Sensors

1123432

Optional heat sinks are available for EnergyMax sensors. Coupled with the sensors' inherent thermal compensation, these heat sinks allow pulse energy measurements at average powers in the tens of Watts – ideal for higher average power excimer lasers.

EnergyMax Energy Sensors

EnergyMax Heat Sinks

Toll Free: (800) 527-3786 • Tel: (408) 764-4983 • Fax: (800) 362-1170 **49**

How to Contact Us

Contact Us by Phone

Coherent, Inc. (800) 527-3786 or (408) 764-4983

Benelux: +31 (30) 280 6060

China: +86 (10) 8215 3600

France: +33 (o)1 8038 1000

Germany: +49 (6071) 968 333

Italy: +39 (02) 31 03 951

Japan: +81 (3) 5635 8680

Korea: +82 (2) 460 7900

Taiwan: +886 (3) 505 2900

United Kingdom: +44 (o) 1353 658833

Contact Us by Email

Laser Products: tech.sales@coherent.com

Laser Measurement: lmc.sales@coherent.com

Service: product.support@coherent.com

Visit the Coherent Website

for more information about how Coherent can enable your excimer laser application.

www.Coherent.com/excimer
www.Coherent.com/uvopticalsystems

Optimize Power and Procedure
Within Your Application with
a Full Portfolio of Scalable
U Exciment Particular
Power, Precisely
Power, Precisely
Power, Precisely
Power, Precisely
Power, Precisely
Power and Your Laser New

Late New
Consequence Description Miching Systems Application with
a Full Portfolio of Scalable
U Exciment Particular
Power, Precisely
Power, Precisely
Power, Precisely
Power, Precisely
Power, Precisely
Power and Your Laser New

Late New
Consequence Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power And Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Description Reliability & Performance

The Ultimate Chairs of Power and Descr

Use the Product and Application Finders below to quickly get more helpful details.

Extensive Laser Finder
Application Reports
Enhanced Application Finder
Technical Illustrations, Videos
Brochures, Tech Notes, Data Sheets

Toll Free: (800) 527-3786 • Tel: (408) 764-4983 • Fax: (800) 362-1170 **51**

Coherent, Inc.

5100 Patrick Henry Drive Santa Clara, CA 95054 United States Toll Free: 1-800-527-3786 Tel: (408) 764-4983 Fax: (408) 764-4646 www.Coherent.com

China

Coherent Inc., Beijing Room 1006-1009, Raycom Info Park Tower B, No. 2, Kexueyuan South Road Haidian District Beijing, 100190, China Tel: 86-10-8215-3600 Hotline Mainland China Only: +86-4006100209 www.Coherent.com.cn

France

Coherent France Parc Technopolis 3, Avenue du Canada Bâtiment Zeta 91978 Courtaboeuf cedex France Tel: +33-1-80-38-10-00 Fax: +33-1-80-38-10-01 www.Coherent.fr

Germany/Austria/Switzerland

Coherent GmbH Dieselstraße 5b D-64807 Dieburg Germany Tel: +49-6071-968-333 Fax: +49-6071-968-499 www.Coherent.de

Italy

Coherent Italia Via Borgese, 14 Milano, 20154 Italy Tel: +39-02-31-03-951 Fax: +39-02-31-03-95-55 www.Coherent.it

Japan

Coherent Japan, Inc.
Toyo MK Building
7-2-14 Toyo
Koto-ku, Tokyo 135-0016
Japan
Tel: +81 3-5635-8680
Fax: +81 3-5635-8701
www.Coherent.co.jp

Korea

No. 101, Eagle Town 278-20, 3 dong Seongsu 2 ga Seongdong-gu, Seoul 133-832, South Korea Tel: +82 2 460 7900 www.Coherent.com

Netherlands

Coherent B.V. Smart Business Park Kanaalweg 18A 3526 KL Utrecht Netherlands Tel: +31-30-280-6060 Fax: +31-30-280-6077 www.Coherent.nl

Taiwan

Coherent Taiwan 2F-5, No. 38. Taiyuan St. Zubei City, Hsinchu County 30265 Taiwan Tel: +886-3-505-2900 www.Coherent.com

United Kingdom/Ireland

Coherent UK Ltd. St Thomas' Place Cambridgeshire Business Park Ely CB7 4EX England Tel: +44-1353-658-833 Fax: +44-1353-659-110 www.Coherent.com