

Structured Light Pattern Generating Laser

In today's world of expanding 3D vision systems, the camera and laser are equal partners in the accuracy, stability and repeatability of the measurements made and used by these applications. The requirements on the laser for uniformity, power, pointing and electrical stability are far above a typical illumination system requirements. Having a source which produces very high power density, very thin measurement cross sections with a uniform return that does not mask the profile of the object is critical to the continued success of these demanding applications. The technology and advancement of these lasers has stayed the same for many years now, not giving the user the ability to leverage this portion of the system beyond its current technology.

The Coherent StingRay SD laser platform is a re-vision of this technology, taking technology and best practices from leading edge applications in Bioinstrumentation and Laser Measurement and Control. The Coherent StingRay SD laser incorporates state of the art electronics, optics and mechanics to provide a compact, highly flexible and reliable laser source that re-sets the standard in Machine Vision.

Coherent StingRay SD Features:

- 450 nm to 830 nm
- Power up to 200 mW
- Uniformity up to 95%
- External focusability
- Pointing <10 µrad/°C
- Microprocessor controlled
- Advanced service monitor
- RS-232 controllable with GUI interface
- Auto scaling input power 5 to 24 VDC

Coherent StingRay SD Applications:

- Non-contact Height Measurements
- Automotive Production
- Extrusion Measurements
- Medical/Dental
- Transportation
- Wood Processing
- Steel Production
- Microelectronics Inspection
- Food Portioning/Inspection
- Glass Inspection

www.Coherent.com/CoherentStingRaySD

Coherent StingRay SDStructured Light Pattern Generating Laser —

System Specifications							
	Coherent StingRay SD-450	Coherent StingRay SD-520	Coherent StingRay SD-639	Coherent StingRay SD-640	Coherent StingRay SD-655		
Wavelength¹ (nm)	450	520	639	640	655		
Wavelength Tolerance (±nm)	±5	+10/-5	+4/-9	<u>±</u> 2	±5		
Output Power (mW - Max.²)	50	50	10	35	5		
Spatial Mode			TEM ₀₀				
M ² (Beam Quality)			<1.5				
Fan Angles (degrees at 80% clip)			1, 5, 10, 20, 30, 45, 60, 75	5			
Straightness (%) >25 mm Line			0.1				
Pointing Stability Over Temp. (µrad/°C)		<10					
RMS Noise (%)(20 Hz to 20 MHz)		<0.5					
Peak-to-Peak Noise (%)(20 Hz to 20 MHz)			<1				
Long-Term Power Stability (%)(8 hrs., ±3°C)			<2				
Warm-Up Time (minutes)(from Cold Start)			<5				
Laser Drive Modes		CW	, Analog, Digital, Fast D	igital			
Digital Modulation		CVV.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	181tai			
Maximum Bandwidth (kHz)			100 (Constant Power)				
Rise Time (10% to 90%)(nsec)			<700				
Fall Time (90% to 10%)(nsec)			<700				
Modulation Depth (%)			100				
Operation Range (VDC)		o to 1 Off	f - 4 to 5 On / o to 1 On	- 4 to 5 Off			
Fast Digital Modulation³							
Maximum Bandwidth (MHz)			2				
Rise Time (10% to 90%)(nsec)			<50				
Fall Time (90% to 10%)(nsec)			<50				
Modulation Depth (%)			100				
Operation Range (VDC)		0 to 1 Off	f - 4 to 5 On / o to 1 On	- 4 to 5 Off			
Analog Modulation			= a a (C = = += =+ D== x)	\			
Maximum Bandwidth (KHz) Rise Time (10% to 90%)(nsec)			500 (Constant Power))			
Fall Time (90% to 10%)(nsec)			<500 <500				
Modulation Depth (%)			100				
Linear Range (VDC)			o.5 to 5 / o to 4.5				
Operating Voltage ⁴ (VDC)			5 to 24				
Operating Current (mA)-(Max. at 25°C)	150	200	100	160	85		
Connector (optional)			Hirose HR-10P-12S				
Slow Start Delay ⁵ (msec)			5				
Input Impedance (kOhm)			1.5				
Beam Angle (mrad)			<3				
ESD Protection			Level 4				
Power Consumption (W)	Ε. [Max.	2070.4	3 Max.			
Heat Dissipation of Laser Head (W)		Max.		3 Max.			
Ambient Temperature	2 /	. 1071	1	J.Max.			
Operating Condition ⁶ (°C)			-10 to 50				
Non-Operating Condition (°C)			-20 to 60				
Shock Tolerance (g)(6 ms)			30				
1 Center Wavelength at 25°C			J .				

¹ Center Wavelength at 25°C.
2 Delivered power.
3 Constant current configuration only.
4 520 nm lasers have best efficiency >12 VDC.
5 If enabled.
6 520 nm lasers are 10 to 40°C.

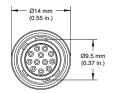
Coherent StingRay SDStructured Light Pattern Generating Laser —

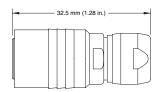
System Specifications						
	Coherent StingRay SD-660	Coherent StingRay SD-660	Coherent StingRay SD-660	Coherent StingRay SD-685	Coherent StingRay SD-785	Coherent StingRay SD-830
Wavelength¹ (nm)	660	660	660	685	785	830
Wavelength Tolerance (±nm)	+7/-10	+6	+6	±15	±10	+10
Output Power (mW - Max.)	35	50	100	50	90	200
Spatial Mode				TEM ₀₀		
M ² (Beam Quality)				<1.5		
Fan Angles (degrees at 80% clip)			1, 5, 10, 2	0, 30, 45, 60, 75		
Straightness (%) >25 mm Line				0.1		
Pointing Stability Over Temp. (µrad/°C)				<10		
RMS Noise (%)(20 Hz to 20 MHz)				<0.5		
Peak-to-Peak Noise (%)(20 Hz to 20 MHz)				<1		
Long-Term Power Stability (%)(8 hrs., ±3°C)				<2		
Warm-Up Time (minutes)(from Cold Start)				<5		
Laser Drive Modes			CW Analog	Digital, Fast Digital		
Digital Modulation			evv, / marog,	Digital, rast Digital		
Maximum Bandwidth (kHz)			100 (Co	nstant Power)		
Rise Time (10% to 90%)(nsec)			(**	<700		
Fall Time (90% to 10%)(nsec)				<700		
Modulation Depth (%)				100		
Operation Range (VDC)			o to 1 Off - 4 to 5 (On / o to 1 On - 4 to	5 Off	
Fast Digital Modulation ²						
Maximum Bandwidth (MHz)				2		
Rise Time (10% to 90%)(nsec)				<50		
Fall Time (90% to 10%)(nsec)				<50		
Modulation Depth (%)			a t = 1 Off	100	- 044	
Operation Range (VDC)			ο το 1 Οπ - 4 το 5 0	On / o to 1 On - 4 to	5 Οπ	
Analog Modulation			/	tt D\		
Maximum Bandwidth (KHz) Rise Time (10% to 90%)(nsec)			500 (CC	onstant Power)		
Fall Time (90% to 10%)(Insec)				<500 <500		
Modulation Depth (%)				100		
Linear Range (VDC)			0.5 to	o 5 / o to 4.5		
Operating Voltage (VDC)				5 to 24		
Operating Current (mA)-(Max. at 25°C)	135	185	260	190	210	350
Connector (optional)			Hirose F	IR-10P-12S		
Slow Start Delay³ (msec)				5		
Input Impedance (kOhm)				1.5		
Beam Angle (mrad)				<3		
ESD Protection				/el 4		
Power Consumption (W)				Лах.		
Heat Dissipation of Laser Head (W)				Лах.		
Ambient Temperature			٠٠ ر	- *		
Operating Condition (°C)			-10	to 50		
Non-Operating Condition (°C)				to 60		
Shock Tolerance (g)(6 ms)				30		
1 Center Wavelength at 25°C						

Center Wavelength at 25°C.
Constant current configuration only.
If enabled.

Coherent StingRay SDStructured Light Pattern Generating Laser -

Mechanical Specifications


Weight (g)	<70
Length¹ (mm)	95/98
Diameter (mm)	19.05
Material	Black annodized AL 6061T1


RS-232 Commands²

Commands	Description	
CDRH	Enables/Disables CDRH Delay	
BAUD	Set Baud Rate	
HAND	Enables/Disables SCPI Handshaking	
HOUR	Reports System Lasing Hours	
MOD	Reports Laser Model	
PNUM	Reports Part Number	
SNUM	Reports Serial Number	
USER	Stores User Defined Identification	
POW:LEV	Reports Diode Laser Power	
DIOD	Reports Diode Temperature	
INT	Reports Internal Temperature	
HIGH	Reports Diode High Temperate Set	
MPOL	Sets Modulation Polarity	
AMPL	Sets Laser Output Power	
STAT	Reports System Status	
CUR:LEV	Reports Diode Current	

Pinout

Color	Description	Pin (optional Hirose connector)	
Standard			
Red	Vin	9	
Black	V _{in} Gnd	1	
Green	Fault	10	
Optional			
White	RS ₂₃₂ Recv	4	
White/Black	RS ₂₃₂ Gnd	5	
Orange	RS ₂₃₂ Trans	6	
Blue	Vmod	2	
Red/Black	V _{mod} Gnd	3	

Available Patterns³

1	95 mm for Standard Configuration, 98 mm	
	for Accessory Configuration.	

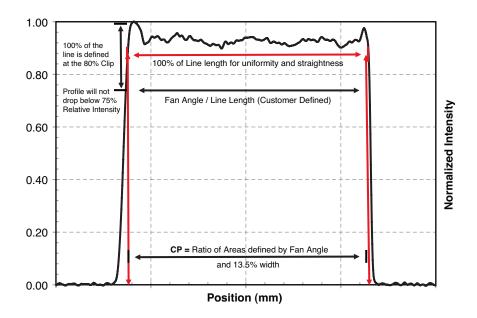
² See Users manual for full Host command set.

Single Dot

Parallel Lines

Single Circle

7 Concentric Circles



Other Pattens available upon request, contact your local Coherent Sales resource.

Flat-Top Intensity Profile

Definitions

Uniformity

Max relative intensity variation over 100% of the line

 $U = (I_{max} - I_{min}) \div (I_{max} + I_{min})$

Contained Power

Power contained in the 100% line at the 80% Clip versus the power contained in the 13.5% Clip

CP = 80%P ÷ 12 5%P

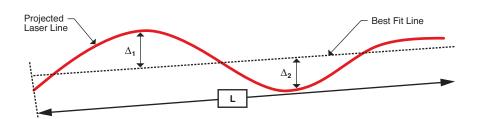
Line Length / Fan Angle

FA is the angle of the projection taken at the 80% Clip

Line length is the physical length at a given working distance taken at the 80% Clip

Relative Illumination Floor

This is the minimum relative intensity at any point on the define line length


Measured as a percent of the normalized intensity

Straightness

Deviation from best fit line

 $\Delta = \Delta_1 + \Delta_2$

 $S = (\Delta/L)^*100$

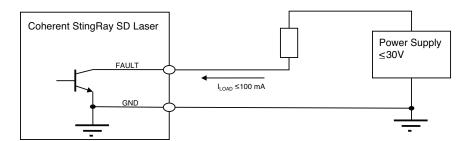
Structured Light Pattern Generating Laser

Fault Conditions

Built-in microcontroller probes most critical parameters of the circuit with ADCs such as:

- Temperature
 - · Photodiode output voltage
 - · Laser diode voltage
 - · Laser diode current
 - · Value of inverted and non-inverted modulating signal in case of Coherent StingRay-AM and Coherent StingRay-DM product options.

Based on the results of the parameter measurement microcontroller can detect following fault conditions

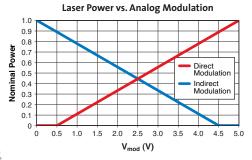

- Over temperature
- Circuit malfunction
- Absence of the input modulating signal
- Critical drop of laser diode output power due to aging

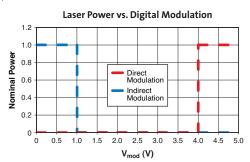
Fault Output Circuit¹

Fault output is an open collector of the transistor that allows wire junction OR functionality with fault signals from other devices. The output can tolerate voltage up to 30V and can drain the current up to 100 mA. The circuit is protected from over current by recoverable fuse.

The load should be connected between the voltage source and the open collector output as shown Figure 1.

Figure 1




¹ Not available with Fast TTL configuration.

Modulation Timing²

Modulation	Fmax	Direct (VDC)	Inverse (VDC)		
		o to 0.5	4.5 to 5		
Analog	500 KHz	0	FF		
Analog	300 KH2	0.5 to 5	o to 4.5		
		Linear	Region		
		0 to 1	4 to 5		
		0	FF		
TTL	100 KHz	4 to 5	0 to 1		
116	100 KHZ	0	N		
		1 to 4	1 to 4		
		UNDEFINED			
		0 to 1	4 to 5		
		0	FF		
Fast TTL	2 MHz	4 to 5	0 to 1		
Tast IIL	2 17(172	ON	N		
			1 to 4		
		UNDE	FINED		

² Lasers equipped with modulation must have a load on the modulation input for proper operation.

Structured Light Pattern Generating Laser

Model Configuration: STR-Wav-Pwr-Mod-Cable-Optic-IA-FA-Focus-Comm-Opt

Product Line	Wavelength	Power	Modulation	Cable
STR	450	1	A^1	FL ²
	520	5	RA ³	HR ⁴
	640	10	T ⁵	P ⁶
	660	20	FT ⁷	B ⁸
	685	35	RT ⁹	
	785	50	RFT ¹⁰	
	830	75		
		100		
		150		
		200		

Op	tic	Interbeam Angle	Fan Angle	Focus ¹¹	COMM	
L12	01	0.07	1	S ¹³	Tx ¹⁴	
H ¹⁵	03	0.09	5	E ¹⁶		
C17	04	0.11	10			
M^{18}	05	0.15	15			
G^{19}	07	0.23	20			
SQ ²⁰	09	0.38	30			
D^{21}	11	0.41	45			
	15	0.5	60			
	19	0.77	75			
	33	1.11				
	59	1.5				
	65	1.9				
	99	2.34				
		5				
		5.4				
		9.7				
		11.4				
		11.7				

Option

- 1 Custom Focus Distance (100 mm to 2000 mm)
- $\hbox{2-Uniformity/Straightness Measurement}\\$
- 3 Safety Class Adjustment
- 4 Delivered Power Adjustment

Ordering Information

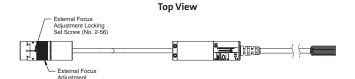
Diode Power

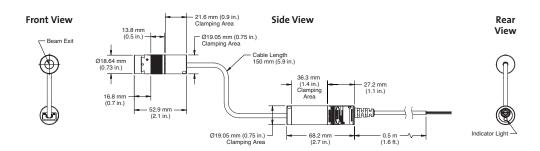
01 L/D	03 L/D	05 L/D	07 L/D	09 L/D	
1 Line / Dot	3 Lines / Dots	5 Lines / Dots	7 Lines / Dots	9 Lines / Dots	
-	1.5, 5, 11.7	0.23, 1.55	5, 8.75	0.07, 0.11	
11 L/D	15 L/D	19 L/D	33 L/D	65 L/D	
11 Lines / Dots	15 Lines / Dots	19 Line / Dots	33 Lines / Dots	65 Lines / Dots	
1.5	2.3	0.77	0.09, 0.38	0.41	
99 L/D	SQ1	G44	01H	C01	
99 Lines / Dots	1 Square	4 x 4 Grid	Cross Hair	1 Circle	
0.149	2.9	2.44	-	0.77, 11.4	
CC7	M77	M19	Custom		
7 Circles	7 x 7 dot matrix	19 x 19 dot matrix			
0.77	1.9	0.77			
450	520	640	655	660	
5, 10 ,20, 35, 50	5, 10, 20, 35, 50	1, 5, 10, 20, 35	1,5	10, 20, 35, 50, 100	
	1 Line / Dot - 11 L/D 11 Lines / Dots 1.5 99 L/D 99 Lines / Dots 0.149 CC7 7 Circles 0.77 450	1 Line / Dot 3 Lines / Dots - 1.5, 5, 11.7 11 L/D 15 L/D 11 Lines / Dots 15 Lines / Dots 1.5 2.3 99 L/D SQ1 99 Lines / Dots 1 Square 0.149 2.9 CC7 M77 7 Circles 7 x 7 dot matrix 0.77 1.9 450 520	1 Line / Dot 3 Lines / Dots 5 Lines / Dots - 1.5, 5, 11.7 0.23, 1.55 11 L/D 15 L/D 19 L/D 11 Lines / Dots 15 Lines / Dots 19 Line / Dots 1.5 2.3 0.77 99 L/D SQ1 G44 99 Lines / Dots 1 Square 4 x 4 Grid 0.149 2.9 2.44 CC7 M77 M19 7 Circles 7 x 7 dot matrix 19 x 19 dot matrix 0.77 1.9 0.77 450 520 640	1 Line / Dot 3 Lines / Dots 5 Lines / Dots 7 Lines / Dots - 1.5, 5, 11.7 0.23, 1.55 5, 8.75 11 L/D 15 L/D 19 L/D 33 L/D 11 Lines / Dots 15 Lines / Dots 19 Line / Dots 33 Lines / Dots 1.5 2.3 0.77 0.09, 0.38 99 L/D SQ1 G44 01H 99 Lines / Dots 1 Square 4 x 4 Grid Cross Hair 0.149 2.9 2.44 - CC7 M77 M19 Custom 7 Circles 7 x 7 dot matrix 19 x 19 dot matrix 0.77 1.9 0.77 450 520 640 655	1 Line / Dot 3 Lines / Dots 5 Lines / Dots 7 Lines / Dots 9 Lines / Dots - 1.5, 5, 11.7 0.23, 1.55 5, 8.75 0.07, 0.11 11 L/D 15 L/D 19 L/D 33 L/D 65 L/D 11 Lines / Dots 15 Lines / Dots 19 Line / Dots 33 Lines / Dots 65 Lines / Dots 1.5 2.3 0.77 0.09, 0.38 0.41 99 L/D 5Q1 G44 01H C01 99 Lines / Dots 1 Square 4 × 4 Grid Cross Hair 1 Circle 0.149 2.9 2.44 - 0.77, 11.4 CC7 M77 M19 Custom 7 Circles 7 × 7 dot matrix 19 × 19 dot matrix 0.77 1.9 0.77 450 520 640 655 660

100, 150, 200

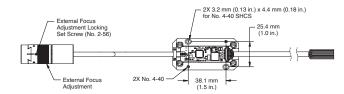
35, 75, 90

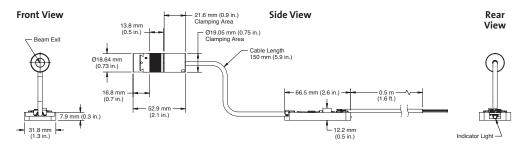
20, 35, 50




¹ A = Analog. ² FL = Flying Lead Cable. ³ RA = Reverse Analog. ⁴ HR = Hirose Cable. ⁵ T = Digital. ⁶ P = Legacy Power Cable. ⁷ FT = Fast Digital. ⁸ B = Legacy Power and BNC Cable. ⁹ RT = Reverse Digital. ¹⁰ RFT = Reverse Fast Digital. ¹¹ "S" focus is fast axis. "E" focus is slow axis. ¹² L = Line. ¹³ S = Standard. ¹⁴ Tx = RS-232 Option. ¹⁵ H = Cross Hair. ¹⁶ E = Extended. ¹⁷ C = Circle. ¹⁸ M = Matrix. ¹⁹ G = Grid. ²⁰ SQ = Square. ²¹ D = Dot.

Structured Light Pattern Generating Laser


Mechanical Specifications


Standard Configuration

OEM Configuration¹ Top View

 $^{^{\}rm 1}$ Coherent StingRay OEM Configuration is not CE compliant and is offered as a component.

www.Coherent.com

Coherent, Inc.,

27650 SW 95th Avenue Wilsonville, OR 97070 phone (800) 343-4912

(408) 764-4042

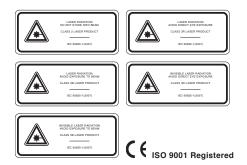
fax (503) 454-5727 e-mail LAS.sales@Coherent.com Benelux +31 (30) 280 6060 China +86 (10) 8215 3600 France +33 (0)1 8038 1000

Germany/Austria/ Switzerland +49 (6071) 968 333

 Italy
 +39 (02) 31 03 951

 Japan
 +81 (3) 5635 8700

 Korea
 +82 (2) 460 7900


 Taiwan
 +886 (3) 505 2900

 UK/Ireland
 +44 (1353) 658 833

Coherent follows a policy of continuous product improvement. Specifications are subject to change without notice.

Coherent's scientific and industrial lasers are certified to comply with the Federal Regulations (21 CFR Subchapter J) as administered by the Center for Devices and Radiological Health on all systems ordered for shipment after August 2, 1976.

Coherent offers a limited warranty for all Coherent StingRay SD lasers. For full details of this warranty coverage, please refer to the Service section at www.Coherent.com or contact your local Sales or Service Representative.

Printed in the U.S.A. MC-012-14-0M1014Rev.A Copyright ©2014 Coherent, Inc.